Sources of uranium
Uranium is widespread in many rocks, and even in seawater. However, like other metals, it is seldom sufficiently concentrated to be economically recoverable. Where it is, we speak of an orebody. Uranium is fairly soluble and uranium oxide precipitates from uranium-bearing groundwaters when they enter a reducing environment. It can be mobilised (re-dissolved)
in situ from such placer deposits by oxygenated leach solution.
In defining what is ore, assumptions are made about the cost of mining and the market price of the metal. Known uranium resources are therefore calculated as tonnes recoverable up to a certain cost.
Australia's uranium resources are over 25% of the world's total, and Kazakhstan is the world's leading source, contributing more than one-third of world production
g. Other countries with significant known resources include Russian Federation, Canada South Africa, Namibia, and Niger. Many more countries have smaller deposits which could be mined. (See information page on
Supply of Uranium).
Uranium is sold only to countries which are signatories of the Nuclear Non-Proliferation Treaty, and which allow international inspection to verify that it is used only for peaceful purposes. (See information page on
Safeguards.)
From uranium ore to reactor fuel
Uranium ore can be mined by underground or open-cut methods, depending on its depth. After mining, the ore is crushed and ground up. Then it is treated with acid to dissolve the uranium, which is then recovered from solution. Uranium may also be mined by
in situ leaching (ISL), where it is dissolved from the orebody
in situ and pumped to the surface.
The end product of the mining and milling stages, or ISL, is uranium oxide concentrate (U3O8)*. Before it can be used in a reactor for electricity generation, however, it must undergo a series of processes to produce a useable fuel.
* U3O8 is a stable complex oxide: U2O5.UO3.
For most of the world's reactors, the next step in making a useable fuel is to convert the uranium oxide into a gas, uranium hexafluoride (UF6), which enables it to be enriched
h. Enrichment increases the proportion of the U-235 isotope from its natural level of 0.7% to 3-5% (see information page on
Uranium Enrichment). This enables greater technical efficiency in reactor design and operation, particularly in larger reactors, and allows the use of ordinary water as a moderator. A by-product (sometimes considered a waste product) of enrichment is depleted uranium (about 86% of the original feed). This, largely U-238, has potential use in fast neutron reactors.
After enrichment, the UF6 gas is converted to uranium dioxide (UO2) which is formed into fuel pellets. These fuel pellets are placed inside thin metal tubes which are assembled in bundles to become the fuel elements for the core of the reactor. UO2 has a very high melting point – 2865°C (compared with uranium metal – 1132°C).
Used reactor fuel is removed from the reactor and stored, either to be reprocessed or disposed of in deep geological repositories.
The uranium orebody contains both U-235 and (mostly) U-238. About 95% of the radioactivity in the ore is from the U-238 decay series. This has 14 radioactive isotopes in secular equilibrium, thus each represents 7% of the total. (In the case of Ranger ore - with 0.3% U308 - it has about 450 kBq/kg, so irrespective of the mass proportion, 32 kBq/kg per nuclide in that decay series.) When the ore is processed, the U-238 and the very much smaller masses of U-234 (and the U-235) are removed. The balance becomes tailings, and at this point has about 86% of its original intrinsic radioactivity. However, with the removal of most U-238, the following two short-lived decay products (Th-234 & Pa-234) soon disappear, leaving the tailings with a little over 70% of the radio-activity of the original ore after several months. The controlling long-lived isotope then becomes Th-230 which decays with a half life of 77,000 years to radium-226 followed by radon-222.
Recycled (reprocessed) uranium
Uranium comprises about 96% of used fuel. When used fuel is reprocessed, both plutonium and uranium are usually recovered separately.
Uranium recovered from reprocessing used nuclear fuel (RepU) is mostly U-238 with about 1% U-235, so it needs to be converted and re-enriched for recycling into most reactors. This is complicated by the presence of impurities
i and two isotopes in particular, U-232 and U-236, which are formed by or following neutron capture in the reactor, and increase with higher burn-up levels
j.
U-232 here is largely a decay product of Pu-236, and increases with storage time in used fuel, peaking at about ten years. Both U-232 and U-236 decay much more rapidly than U-235 and U-238, and one of the daughter products of U-232 emits very strong gamma radiation, which means that shielding is necessary in any plant handling material with more than very small traces of it. U-236, comprising about 0.5% of recovered uranium, is a neutron absorber which impedes the chain reaction, and means that a higher level of U-235 enrichment is required in the product to compensate.
Because they are lighter than U-238, both U-232 and U-236 tend to concentrate in the enriched (rather than depleted) output, so reprocessed uranium (RepU) that is re-enriched for fuel must be segregated from enriched fresh uranium. Enriched RepU has an activity of over 250 kBq/g, which compares with 82 kBq/g (most of this being from U-234) for enriched fresh uranium. The presence of U-236 in particular means that the U-235 enrichment level needs to be a bit higher than for fresh uranium, and most reprocessed uranium can normally be recycled only once. In the future, laser enrichment techniques may be able to remove these difficult isotopes.
High-enriched uranium
In October 2015 the Institute for Science and International Security (ISIS) reported that there was about 134 tonnes of civilian stocks of high-enriched uranium (HEU) worldwide at the end of 2014. The number of countries holding stocks of 1 kg or more of HEU stood at 29 then, but this has since fallen to 26. About 16.5 tonnes of HEU exist in the non-nuclear weapon states (NNWS), almost all of which resides in ten of them. The nuclear weapon states (NWS) possess a combined estimated total of 115-120 tonnes. Most civil HEU is used in research reactors.
ISIS reported that at the peak of HEU use, almost 60 countries used HEU fuels and tonnes of HEU were in international commerce. Since the late 1970s, the USA and other countries have converted many research reactors from HEU to low enriched uranium (LEU) fuels and discouraged the construction of new reactors that require HEU fuel. Both the USA and Russia also launched 'take-back' programmes to retrieve HEU they provided to these countries for use in their nuclear programmes. As a result the number of countries possessing HEU has more than halved. The number of countries with a kilogram or more of HEU is expected to decrease further as Russia is set to take back more of the HEU that it provided and to reprocess and blend down the recovered HEU. The USA also seeks to repatriate US-origin HEU and accept other priority stocks during the next several years. HEU production for civil purposes largely stopped years ago. However, Russia decided to resume producing HEU for a Chinese fast reactor that reached criticality in 2010.
anium. [
Back]